
A Scalability Model for ECS’s Data Server

Daniel A. Menasc´e
Dept. of Computer Science

George Mason Univ., MS 4A5
Fairfax, VA 22030

menasce@cne.gmu.edu
tel: +1 703 993 1537
fax: +1 703 993 1710

Mukesh Singhal
Dept. of Computer and Info. Sc.

The Ohio State Univ.
Columbus, OH 43210

singhal@cis.ohio-state.edu
tel: +1 614 292 5839
fax: +1 641 292 2911

Abstract

This paper presents a model for the scalability analysis of the Data Server sub-
system of the EOSDIS Core System (ECS). The goal of the model is to analyze to
determine if the planned architecture of the Data Server will support an increase in the
workload with the possible components upgrade. We provide a summary of the ECS’s
Data Server architecture and of a high level description of the Ingest and Retrieval
operations in the ECS’s Data Server. This description forms the basis for the develop-
ment of our scalability model. Then we present details of the scalability model and the
methodology used to solve it. We describe the structure of the scalability model, input
parameters, expressions for computing parameters of the scalability model solver, and
algorithms for solving the scalability model. The scalability model is very general and
allows the modeling of data servers with numerous configurations.

1 Introduction

Perhaps one of the most important examples of large-scale, data-intensive, geographically
distributed, information systems is NASA’s Earth Observing System (EOS) Data and In-
formation System (EOSDIS). EOS is a NASA mission aimed at studying the planet Earth.
A series of satellites with scientific instruments aboard will be collecting important data
about the Earth’s atmosphere, land, and oceans over a period of 15 years. This mission will
generate an estimated tera bytes/day of raw data which will be processed to generate higher
level data products [2]. Raw data received from the satellites is first stored as Level 0 (L0)
data which may then be transformed after successive processing into levels 2 through 4 (L2
- L4). Data received from the satellites and the data products generated from them will
be stored at various Distributed Active Archive Centers (DAACs) located throughout the
United States. An important component of a DAAC is the Data Server—the subsystem that
stores and distributes data as requested by EOSDIS users.

The Data Server stores its information using a hierarchical mass storage system that
uses a combination of automated tape libraries and disk caches to provide cost-effective

storage for the large volumes of data held by the Data Server. Performance studies and
workload characterization methods and software for hierarchical mass storage systems are
reported in [3, 5, 6, 7, 8].

In this paper, we present a model for the scalability analysis of the Data Server subsys-
tem of the EOSDIS Core System (ECS). The goal of the model is to analyze if the planned
architecture of the Data Server will support an increase in the workload with the possible
upgrade and/or addition of processors, storage subsystems, and networks. This analysis
does not contemplate new architectures that may be needed to support higher demands.

The remaining sections of this paper are organized as follows. Section 2 provides a
summary of the architecture of ECS’s Data Server as well as a high level description of
the Ingest and Retrieval operations as they relate to ECS’s Data Server. This description
forms the basis for the development of the scalability model of the data server. Section 3
presents the scalability model and the methodology used to solve it. This section describes
the structure of the scalability model, input parameters, algorithms for computing param-
eters of the scalability model solver, algorithms for solving the scalability model, and the
assumptions and rationale behind these assumptions. The scalability model takes into ac-
count the proposed hardware and software architecture. The model is quite general and
allows the modeling of data servers with numerous configurations.

2 Ingest and Retrieval Operations

This section provides a high level description of the Ingest and Retrieval workloads of
the ECS’s Data Server. This description forms the basis for the development of a model
to analyze the scalability of the Data Server. The scalability analysis entails determining
whether the current architecture of the ECS Data Server supports an increase in the work-
load intensity with possibly more processing and data storage elements of possibly higher
performance.

2.1 Subsystems of the Data Server

The following subsystems of the Data Server will be considered for the purpose of the
scalability analysis considered in this study:

Software Configuration Items:

� Science Data Server (SDSRV):responsible for managing and providing access to
non-document earth science data.

� Storage Management (STMGT):stores, manages, and retrieves files on behalf of
other SDPS components.

Hardware Configuration Items:

� Access Control and Management (ACMHW):supports the Ingest and Data Server
subsystems that interact directly with users. Of particular interest here is the SDSRV.

� Working Storage (WKSHW): provides high performance storage for caching large
volumes of data on a temporary basis.

� Data Repository (DRPHW): provides high capacity storage for long-term storage
of files.

� Distribution and Ingest Peripherals (DIPHW): supports ingest and distribution via
physical media.

2.2 Ingest Data Operation

The diagram in Figure 1 depicts the flow of control and data for the Ingest process. We
have not included Document Repository nor the Document Data Server due to their small
impact on scalability if compared with ingest of L0 data. Circles in the diagram represent
processes. The labels in square brackets beside each process indicate the hardware con-
figuration item they execute on. Bolded labels indicate hardware configuration items that
belong to the Data Server.

The main aspects of the diagram of figure 1 are discussed below:

� Incoming L0 data is first stored into the system on the Staging Disk, and then into
AMASS’s cache—the hierarchical mass storage systems’ disk cache for files. The
metadata are extracted and entered into a Metadata database managed by Sybase and
the actual data are archived. This is depicted in figure 2.

� The SDPF (Science Data Processing Function) represents the users of the Ingest sys-
tem and negotiates with the Ingest Request Manager for coordination of transferring
data into the Ingest system.

� Data are initially entered through an interactive GUI interface, or, most of the time
from external data providers through ftp or direct transfer of files, if that is done on
the same local network, into the Staging Disk.

� The actual data is then transferred into AMASS’ disk cache. From the cache, the data
migrates to robotically mounted tapes managed by AMASS. The metadata extracted
from the data is stored into a Metadata Database managed by Sybase.

� The SDSRV (Science Data Server) gives the metadata templates to the Ingest Request
Manager for it to extract metadata.

� There are two and sometimes three SDSRV’s and one STMGT (Storage Manage-
ment) processes. The Ingest Request Manager process selects which SDSRV to use.

The scalability analysis will among other things determine possible performance bot-
tlenecks. The staging disk, the AMASS disk cache, and the metadata extraction process
are likely candidates for bottlenecks.

Sybase
Meta Data

Disk

Staging Disk

Staging

C
E

R
E

S
m

et
a

da
ta

 te
m

pl
at

e

Web
Interface

SDSRV

STMGT

RAID

(Real Data)

Data Archive

Staging Disk

Manager

Ingest Request

Manager

ADSRV

meta data template

select and invoke

METMET: Metadata extraction tool, to provide
 metadata template.
SDSRV: Science Data Server (Earth
 Science). It uses template to
 extract and store template data.

Control or Communication

Data transfer link

SDSRV

cache for

AMASS

Parameter
DB

[ACMHW]

[WKSHW]

[ICLHW]

Higher Level products)

viders (L0 + media

External data pro-

 managementSTMGT: Storage

[DRPHW]

Electronic source of

higher level products

select and invoke

PDPS

Figure 1: L0 Ingest Control and Data Flow.

2.3 Retrieval Operation

This section examines the retrieval and processing operation on L1+ data. Figure 3 depicts
the flow of control and data for this operation. Circles in the diagram represent processes.
The labels in square brackets beside each process indicate the hardware configuration item
they execute on. Bolded labels indicate hardware configuration items that belong to the
Data Server.

The retrieval operation proceeds in the following three stages:

Stage 1: Checking data and deciding what processing is required:

� SDSRV initiates the retrieval process by notifying the Subscription Server of the new
data arrival.

� The Subscription Server performs a subscription checkfor this data and performs an
appropriate notification, e.g., email notification, etc.

Metadata Template

Metadata Database (MDDB)

Staging Disk

Extract Metadata AMASS Cache

Data Archive

Receiving meta data
template from SDSRV

Figure 2: Data Flow Diagram for Ingest Data.

� The Subscription Server notifies PDPS PLANG of new data arrival.

� PLANG figures out (e.g., retrieves) a processing plan and based on the processing
plan, passes the processing request to PRONG.

� PDPS PRONG connects to the appropriate SDSRV (may not be the SDSRV which
initiated the retrieval and processing operations).

Stage 2: Retrieving data:

� The SDSRV requests that the Data Distribution Services CSCI (DDIST) retrieves the
data files.

� SDSRV�!requests DDIST�!requests STMGT. The STMGT retrieves the files from
AMASS archive into the AMASS cache if it is already not present in the cache.

� SDSRV notifies PRONG of data (identified by UR) availability.

Stage 3: Processing data and archiving, both data and metadata:

� PRONG transfers the retrieved data from the Working Storage to local PDPS disk.
(If the AMASS cache and Working Storage are on different devices, then data must
be first moved from the former to the latter.)

� PRONG processes the retrieved data to produce a higher level product.

RAID

local
PDPS
Disk

MDDB: Metadata Database
SDSRV: Science Data Server
PLANG: Production Planning CSCI
PRONG: Processing CSCI
PDPS: Product Development and
 Processing System
DDIST: Data Distribution Services
 CSCI
STMGT: Storage Management
 software CSCI
AMASS: Archive Management and
 Storage System
CERES: Clouds and Earth’s Radiant
 Energy System

Staging

Disk

Staging

Disk

PLANG PRONG

MDDB
Sybase

Subscription

Server

DDIST

Wrapperarrival event
New data

SDSRV

AMASS

Tape Control or notification

Data flow

STMGT

Server

Ftp

Amass
Cache

[ACMHW]

[ACMHW]

[DIPHW]

[DRPHW]

[PLNHW]

[SRPHW]

[DRPHW]

[DRPHW]
Staging

Disk

Figure 3: A Flow Diagram of Data Retrieval and Processing

� PRONG processes the data to a higher-level product and extracts metadata from the
higher-level data using the Metadata Extraction Tool and populates the target meta-
data template and writes a metadata file (on MDDB Sybase).

� PDPS PRONG sends an insert request to SDSRV.

� SDSRV�!requests STMGT�!requests AMASS. The AMASS file manager archives
the files. Archiving is done in two steps:

– STMGT copies data from PDPS (local disk) to Working Storage via an ftp
command.

– data are copied from the Working Storage to AMASS cache (and then to AMASS
archive).

� SDSRV inserts metadata in the Metadata Database (MDDB) and then notifies PRONG
that the archival operation has been completed.

2.4 Assumptions

The various software processes shown in the previous subsection were mapped into the dif-
ferent hardware configuration items for the GSFC, EDC, and LaRC DAACs. The following
assumptions were made when developing the scalability model.

� Processing of “Ingest data” and “Data retrieval and processing” constitute the main
load on the Data Server. Thus, we modelled only these two operations.

� We did not model users’ requests for data to be subsetted or subsampled nor we
modelled compressed data.

� In data retrieval operations, PLANG retrieves a processing plan from a database (e.g.,
Sybase).

� The AMASS cache and the working storage may be implemented on the same disk.

� Servers that are not potential bottlenecks were not considered in the model. Examples
include the “subscription server” and PDPS.

� We assume that mean arrival rate of both types of requests (ingest data and data re-
trieval) and service demands of these requests at various service stations are available
or can be easily estimated.

3 A Scalability Model

We now describe our scalability model for the ECS’s Data Server and our methodology
for solving this model. We describe the structure of the scalability model, input parame-
ters, algorithms for computing parameters of the scalability model solver, and algorithms
for solving the scalability model. We describe our assumptions and rationale for these
assumptions.

The scalability model is based on our understanding of the architecture of ECS’s Data
Server and the Ingest and Retrieval operations described in the previous section. The sole
purpose of the model is to analyze the scalability of the Data Server, i.e., to determine
whether the current architecture of the ECS Data Server can support an increase in the
workload intensity.

3.1 A Framework for Scalability Analysis

Figure 4 gives the structure of the scalability model. The “Scalability Model Generator”
collects information from three input files (these files define the modeling information on
the ECS’s data server and the workload) and processes this information to create an output
file which contains inputs to the “Scalability Model Solver”. This solver uses queuing

network [4] techniques to obtain desired performance measures such as response times per
workload, device utilizations, bottleneck indications, and queue lengths.

The first input file to the Scalability Model Generator, “Hardware Objects”, defines the
hardware resources (e.g., processors, disks, networks, and tape libraries) of the Data Server.
The second input file to the Scalability Model Generator, “Workloads and Execution Flow”,
completely characterizes the workload that drives the Data Server. The third input file
to the Scalability Model Generator, “Processes”, defines the parameters of the software
modules that will be executed on hardware servers by arriving requests for service (i.e., the
workload).

Model
Parameters

Scalability Model Generator

Scalability

Scalability Model Solver

scalability analysis results

Workloads
and Execution

Flow

ProcessesHardware
Objects

Figure 4: Scalability Model Framework.

The Scalability Model Generator reads information in these three files, processes this
information, and generates an output file that contains the service demands for every re-
source in the queuing network model of Service demand is the total service time of a
request of a certain workload type at a given device. The service demand does not include
any time waiting to get access to the device. Waiting times are obtained by solving the
model. The equations that form the basis of computation of service demands are presented
in Section 3.3. The Scalability Model Solver reads information about the service demand
from this file and solves the queuing network model for desired performance measures.
The underlying equations that form the basis for a solution are described in Section 3.4.

3.2 Parameters for the Scalability Model

The parameters used in the scalability model are:

� P: set of processes

� NCPUss: number of processors of servers

� SPints: SPECint95 rating of servers

� SPfps: SPECfp95 rating of servers

� TypeSPp: type (e.g., int or fp) of the SPEC rating used to specify the computation
demand for processp.

� SPp: SPEC rating of the machine used to measure the computation demand of pro-
cessp.

� ComputeDemandp: compute demand of processp measured at a machine with
SPEC ratingSPp, in seconds

� PExecp;w: probability that processp executes in workloadw

� Seekd;s: average seek time of single diskd of servers, in seconds

� Latencyd;s: average rotational latency of single diskd of servers, in seconds

� TransferRated;s: transfer rate of single diskd of servers, in MBytes/sec

� Hitda;s: cache hit ratio for disk arrayd

� RAIDSeekda;s: average seek time at any of the disks that compose disk arrayda at
servers, in seconds

� RAIDLatencyda;s: average rotational latency at any of the disks that compose disk
arrayda at servers, in seconds

� RAIDRateda;s: transfer rate of any of the disks that compose disk arrayda at server
s, in Mbytes/sec

� NTDrivest;s: number of tape drives of tape libraryt at servers.

� NRobotst;s: number of robots of tape libraryt at servers.

� Rewindi;t;s: rewind time of tape drivei of tape libraryt at servers.

� MaxTSearchi;t;s: maximum search time of tape drivei of tape libraryt, in seconds
at servers.

� TapeRatei;t;s: transfer rate of tape drivei of tape libraryt at servers, in Mbytes/sec

� Exchangest;s: number of tape exchanges per hour for each robot of tape libraryt at
servers. (Each exchange involves putting the old tape in the tape library and loading
the new tape into the tape drive.)

� FilesPerMountp;t;s: average number of files accessed per mount by processp at tape
library t at servers.

� FileSizePerMountp;t;s: average size of files accessed by process, in Kbytesp per
mount at tape libraryt at servers.

� Bandwidthn: bandwith of networkn, in Mbps

� NTypen: type of networkn.

� NumBlocksd;s;p: number of blocks accessed by processp at single diskd at servers.

� BlockSized;s;p: block size for each access to single diskd at servers by processp, in
KBytes

� NumBlocksReadda;s;p: number of blocks read by processp from disk arrayda at
servers

� NumBlocksWrittenda;s;p: number of blocks written by processp to disk arrayda at
servers

� StripeUnitSizeda;s: size of the stripe unit for disk arrayda at servers, in Kbytes

� Serverp: server in which processp is allocated

� �w: arrival rate of workloadw, in requests/sec

� Pw: set of processes executed by workloadw

� �w = f(p; x) j p 2 P and x = Pr[p is executed in workload wg: process flow
within workloadw.

� PNetn;w: probability that networkn is traversed by workloadw.

� Volumen;w: total data volume transferred through networkn by workloadw, in
Kbytes

The input parameters for the Scalability Model Solver are:

� Di;p;w: average service demand of processp in workloadw at devicei, i.e., the total
time spent by the process at the device for workloadw. This time does not include
any queuing time.

� �w: average arrival rate of requests of workloadw that arrive to ECS’s Data Server.

3.3 Algorithms for Computing the Scalability Model Solver Parameters

In this section, we derive expressions for computing service demands for workloads at
various types of devices. The service demand at a device due to a task is defined as the
multiplication of the visit count of the task to the device and the service time of the task per
visit to the device. The service demand represents the total average time spent by the task
at the device.

3.3.1 Computation of Service Demands for Processors

The service demand that a task in workloadw presents at a servers due to the execution of
a processp is given by:

Ds;p;w =
ComputeDemandp � PExecp;w

ScaleFactor(p; s)
(1)

where

ScaleFactor(p; s) =

(
SPints=SPp if TypeSPp = int
SPfps=SPp if TypeSPp = fp

(2)

SinceComputeDemandp is given for a processor of certain rating,ScaleFactor(p; s)
is used to normalize the process service time to the speed-rating of the current processor.

The service demand,Ds;w, of a workloadw at the CPU of servers is then

Ds;w =
X

8p2Pw j s=Serverp

Ds;p;w (3)

3.3.2 Computation of Service Demands for Single Disks

The service demand that a task in workloadw presents to a diskd at a servers due to the
execution of a processp is given by:

Dd;s;p;w = PExecp;w � NumBlocksd;s;p �"
Seekd;s + Latencyd;s +

BlockSized;s;p
TransferRated;s � 1000

#
(4)

The term “Seekd;s+Latencyd;s+
BlockSized;s;p

TransferRated;s�1000
” denotes the time the disk takes to

fetch one block of data.
The service demand,Dd;s;w, of a workloadw at diskd of servers is then

Dd;s;w =
X

8p2Pw j s=Serverp

Dd;s;p;w (5)

3.3.3 Computation of Service Demands for Disk Arrays

The computation of service demands for disk arrays is involved and is done in several steps.
The number of blocks that a processp reads at a disk (i.e., the number of stripe accesses)
in disk arrayda at servers is given by

NumBlocksReadPerDiskda;s;p =

&
NumBlocksReadda;s;p � BlockSized;s;p

5� StripeUnitSizeda;s

'
(6)

wheredxe denotes the ceiling ofx. The numerator denotes the total volume of informa-
tion read from all five disks in the disk array and the denominator denotes the volume of
information read from all five disks in a single stripe group access.

The service time to process each stripe request at each disk is given by the following
equation: (The first subexpression indicates that the seek time is amortized over all stripe
unit accesses.)

ServiceTimePerDiskda;s;p =
RAIDSeekda;s

NumBlocksReadPerDiskda;s;p
+RAIDLatencyda;s +

StripeUnitSizeda;s
RAIDRateda;s

(7)

The service demand due to read requests at a disk in disk arrayda at servers due to
execution of processp in workloadw is given by the following equation: (Since a disk
array has a data cache, term(1�Hitda;s) denotes the probability that data to be read is not
available in the cache and a read access will have to be made.)

ReadServiceDemandPerDiskda;s;p;w = NumBlocksReadPerDiskda;s;p �

ServiceTimePerDiskda;s;p �

PExecp;w � (1� Hitda;s) (8)

Now the service demand,Dr
da;s;p;w, due to read requests at disk arrayda at servers due

to execution of processp in workloadw is given by the following equation:

Dr
da;s;p;w =

H5 � ReadServiceDemandPerDiskda;s;p;w
1� USingleDiskda;s;p;w

(9)

whereH5 =
P

5

j=1 1=j = 2:28 andUSingleDiskda;s;p;w is given by Eq. (14). The termH5

shows up in the expression because a read request at the disk array is complete only after
the last read at its disks is done. This approximation is based on [5].

The service demand,Dr
da;s;w, of a workloadw at the disk arrayda of servers is then

Dr
da;s;w =

X
8p2Pw j s=Serverp

Dr
da;s;p;w (10)

The computation of the service demand due to write requests at disk arrayda at servers
due to the execution of processp in workloadw is similar. The computation of the number
of blocks that a processp writes at a disk (i.e., the number of stripes written) in the disk
arrayda at servers is somewhat different and is given by the following equation: (The
(4/5) term in the denominator is due to the fact that a parity block is generated for every
four blocks written onto the disks. Thus 25% additional data is generated.)

NumBlocksWrittenPerDiskda;s;p =

&
NumBlocksWrittenda;s;p � BlockSized;s;p

(4=5)� StripeUnitSizeda;s

'

(11)

WriteServiceDemandPerDiskda;s;p;w = NumBlocksWrittenPerDiskda;s;p �

ServiceTimePerDiskda;s;p �

PExecp;w (12)

Dw
da;s;p;w =

H5 �WriteServiceDemandPerDiskda;s;p;w
1� USingleDiskda;s;p;w

(13)

where

USingleDiskda;s;p;w = PExecp;w � �w �

[(NumBlocksReadPerDiskda;s;p +

NumBlocksWrittenPerDiskda;s;p)�

ServiceTimePerDiskda;s;p] (14)

The service demand,Dw
da;s;w, of a workloadw at the disk arrayda of servers is then

Dw
da;s;w =

X
8p2Pw j s=Serverp

Dw
da;s;p;w (15)

3.3.4 Computation of Service Demands for Tape Libraries

The computation of the service demands for tape drives and robots at a tape library is
involved and is done in several steps.

The total average seek time that a processp experiences at tape drivei in tape library
t at servers is given by the following equation: (The factor “1/2” is due to the fact that
the first file access will result in searching half the tape on the average and the factor “1/3”
shows up because the remaining file accesses will require searching 1/3 of the tape on the
average.)

AverageSeekTimet;s = MaxTSearchi;t;s � [1=2 + (FilesPerMountp;t;s � 1)=3] (16)

The average tape mount time in seconds at tape drivei in tape libraryt at servers is
given by

MountTimei;t;s = 3; 600=2� Exchangest;s (17)

The time that tape drivei in tape libraryt at servers takes to serve a file access request
is given by

TapeDriveServiceTimei;t;s = AverageSeekTimet;s +

FilesPerMountp;t;s � FileSizePerMountp;t;s
TapeRatei;t;s

+

Rewindi;t;s (18)

The average robot service time is then

RobotServiceTimet;s = 2�MountTimei;t;s (19)

So, the service demand at the tape drivei of tape libraryt of servers due to the execution
of processp in workloadw is

Dtape drive
i;t;s;p;w = PExecp;w � TapeDriveServiceTimei;t;s=NTDrivest;s (20)

The service demand at the tape drivei of tape libraryt of servers due to workloadw is

Dtape drive
i;t;s;w =

X
8p2Pw j s=Serverp

Dtape drive
i;t;s;p;w (21)

The average service demand at any robot of tape libraryt of servers due to the execution
of processp in workloadw is

Drobot
t;s;p;w = PExecp;w � RobotServiceTimet;s=NRobotst;s (22)

The service demand at any robot of tape drivei of tape libraryt of servers due to
workloadw is

Drobot
t;s;w =

X
8p2Pw j s=Serverp

Drobot
t;s;p;w (23)

3.3.5 Computation of Service Demands for Networks

The service demand of workloadw presents at networkn is given by the following equa-
tion: (The term “V olumen;w=Bandwidthn” denotes the time taken by the network to trans-
fer the data for a task in workloadw.)

Dnetwork
n;w =

PNetn;w � Volumen;w � 8

Bandwidthn � 1000
(24)

3.4 The Scalability Model

The scalability model uses queuing network (QN) models to determine the degree of con-
tention at each of the devices that compose ECS’s Data Server. The QN model used in
this case is a multiclass open QN [4] with additional approximations to handle the case
of disk arrays and to handle the instances of simultaneous resource possession that appear
when modeling automated tape libraries [3]. The QNs used also allow for load dependent
devices. Load dependent devices are used in the model to handle the following situations:

� Symmetric multiprocessors: this case is characterized by a single queue for multiple
servers. In this case, the service rate�(k) of the CPU as a function of the number of
requestsk is given byk:� for k � J andJ:� for k > J whereJ is the number of
CPUs and� is the service rate of each CPU.

� Collision-based LANs: in this case, the throughput of the LAN decreases as the
load increases due to an increase in the number of collisions. This can be modeled
by using an appropriate service rate function�(k) as a function of the load on the
network [1].

An open multiclass QN is characterized by the numberR of classes, the numberK of
devices, by a matrixD = [Di;r] i = 1; � � �K; r = 1; � � � ; R of service demands per device
per class, and by a vector~� = (�1; � � � ; �R) of arrival rates per class. For each device, one
has to indicate its type. The following types of devices are allowed in the QN model:

� Delay devices: no queues are formed at these devices.

� Queuing Load Independent (LI) devices: queues are formed at these devices but the
service rate of the device does not depend on the number of requests queued for the
device.

� Load Dependent device (LD): queues are formed at these devices but the service rate
of the device depends on the number of requests queued for the device. In the case
of load dependent devices, one has to provide the service rate multipliers (see [4])
for each value of the number of customers. In most cases—this is true for multipro-
cessors and collision-based LANs—the value of the service rate multipliers saturates
very quickly with the number of requests. Therefore, we only need to provide a small
and finite number of service rate multipliers for each LD device.

� Disk Array: this is a special type of device used to model disk arrays (see Fig. 5 for
a depiction of this type of device).

1

2

3

4

5

queue for
disk array

Figure 5: Disk Array.

The output results of an open multiclass QN are:

� R
0

i;r(
~�): average residence time of classr requests at devicei, i.e., the total time—

including queuing and service—spent by requests of classr at devicei.

� Rr(~�): average response time of requests of classr. Rr(~�) =
PK

i=1
R

0

i;r(
~�).

� Ui(~�): utilization of devicei.

� ni;r(~�): average number of requests of classr present at devicei.

� ni(~�): average number of requests of at devicei. ni(~�) =
PR

r=1
ni;r(~�).

The basic equations for open multiclass QNs are (see [4]):

Ui;r(~�) = �rDi;r

Ui(~�) =
RX
r=1

Ui;r(~�)

�ni;r(~�) =
Ui;r(~�)

1� Ui(~�)

R
0

i;r(
~�) =

8>>><
>>>:

Di;r delay device

Di;r

1� Ui(~�)
LI device

Rr(~�) =
KX
i=1

R
0

i;r(
~�)

ni(~�) =
RX
r=1

ni;r(~�)

The extension to LD devices is given in [4].

4 Preliminary Results

The model presented here was applied to the Goddard Space Flight Center (GSFC) Data
Server’s architecture. Figure 6 displays the response time versus the arrival rate of data
ingested in GB/day. The rate at which data is retrieved is assumed to be twice the ingest
rate. It should be pointed out that at this point, these are very preliminary results and are
not intended to reflect the performance of GSFC’s Data Server. Data collection efforts
are still in progress. The purpose of Figure 6 is to illustrate the type of results one can
obtain from the type of models discussed in this paper. As it can be seen, in the curve, the
ingest workload starts to saturate at approximately 160 GB/day while the retrieval workload
supports a much higher data rate.

5 Concluding Remarks

In this paper, we derived the algorithms and expressions to be used to convert data describ-
ing the software and hardware architecture of ECS’s Data Server into a scalability model.
The model will be used to verify how well the Data Server supports an increase in work-
load intensity while maintaining reasonable performance. The scalability model is based
on queuing network models that are automatically generated from the description of the
architecture and the workload.

0

20

40

60

80

100

120

140

160

180

14.69 29.38 58.75 88.13 117.50 146.88 161.57 162.16

Ingest Data Transfer Rate in GB/day
(Retrieval arrival rate = 2 * Ingest arrival rate)

R
es

po
ns

e
T

im
e

(s
ec

)

Ingest Response Time(s) Retrieval Response Time(s)

Figure 6: Response time versus data rate for GSFC.

References

[1] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,Quantitative System
Performance: Computer System Analysis Using Queuing Network Models, Prentice
Hall, Englewood Cliffs, N. J., 1984.

[2] B. Kobler, J. Berbert, P. Caulk, and P. C. Hariharan,Architecture and Design Storage
and Data Management for the NASA Earth Observing System Data and Information
System (EOSDIS), Fourteenth IEEE Symposium on Mass Storage Systems (Second
International Symposium), Monterey, CA, September 11-14, 1995.

[3] D. A. Menascé, O. I. Pentakalos, and Y. Yesha, An Analytic Model of Hierarchical
Mass Storage Systems with Network-Attached Storage Devices,Proc. of the 1996
ACM Sigmetrics Conference, Philadelphia, PA, May 1996.

[4] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy,Capacity Planning and Per-
formance Modeling: from mainframes to client-server systems, Prentice Hall, Upper
Saddle River, NJ, 1994.

[5] O. I. Pentakalos, D. A. Menasc´e, M. Halem, and Y. Yesha,Analytical Performance
Modeling of Hierarchical Mass Storage Systems, IEEE Transactions on Computers,
Vol. 46, No. 10, pp. 1103-1118.

[6] O. I. Pentakalos, D. A. Menasc´e, and Y. Yesha,Pythia and Pythia/WK: Tools for the
Performance Analysis of Mass Storage Systems, Software Practice and Experience,
October 1997.

[7] O. I. Pentakalos and D. A. Menasc´e,Automated Clustering Based Workload Charac-
terization for Mass Storage Systems, Fifth NASA Goddard Space Flight Center Con-
ference on Mass Storage Systems and Technologies, College Park, MD, September
17-19, 1996.

[8] O. I. Pentakalos , D. A. Menasc´e, Y. Yesha, and M. Halem,An Approximate Perfor-
mance Model of a Unitree Mass Storage System, Fourteenth IEEE Symposium on
Mass Storage Systems (Second International Symposium), Monterey, CA, Septem-
ber 11-14, 1995.

